Delivering Gene Therapies in Utero

By delivering mRNA to the skin of mice in utero, researchers showed a proof-of-concept for shuttling gene therapies to skin cells before birth.

A black and white headshot
| 3 min read
Patient with skin blisters being swabbed by gloved hand

(C) ISTOCK.COM, PONYWANG

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

People with genetic skin diseases are frequently symptomatic since birth, and such diseases can be severe, chronic, and hard to treat.1 One example is epidermolysis bullosa, which causes the skin to blister and break, leaving gaping, slow-healing wounds.2 At this year’s American Society of Gene and Cell Therapy conference, researchers presented preliminary work suggesting that lipid nanoparticles could one day deliver mRNA-based gene therapies to treat skin diseases in utero.

By injecting lipid nanoparticles directly into the amniotic fluid of pregnant mice, the researchers successfully delivered mRNA molecules to fetal skin. Combined with gene editing machinery like CRISPR, the technology may one day lead to treatments for genetic skin diseases before babies are born.

Lipid nanoparticles are tiny shells made of positively charged lipids, which bind to the negatively charged backbone of their mRNA cargo. Pegylated lipids, phospholipids, and cholesterol all help stabilize the particle, contribute to its structure, and fuse to cells in the body, allowing the particles to dump their contents inside.3 Previous studies have used lipid nanoparticles to shuttle genetic material to organs like the lungs, liver, and heart in utero.4,5

William Peranteau, a pediatric surgeon at the Children’s Hospital of Philadelphia (CHOP) and coauthor of the work, and his team are interested in studying novel therapies for genetic diseases that affect patients shortly after birth. He said that skin diseases are particularly tricky to treat because health professionals may be limited to targeting a specific area, either by using a topical treatment, like a lotion or cream, or by injecting a drug.

The team tackled this challenge by injecting lipid nanoparticles containing mRNA for Cre recombinase into the amniotic fluid of pregnant mice on the ninth, 12th, and 16th day of the gestational period. (The mouse gestational period lasts a total of 20 days.) They used fluorescent Cre-reporter mice for their experiment, meaning that any cells that took up the mRNA packaged in the lipid nanoparticles would fluoresce.

“We did this at different gestational ages with the hypothesis that the earlier you’re able to do it, the more accessible the skin progenitor cells are and the easier they are to target,” Peranteau said.

When the mice were born, the researchers used fluorescence microscopy to confirm that skin cells throughout the body brought in the nano particles’ mRNA cargo. “The earlier we delivered the lipid nanoparticles, the more robust expression we could achieve in the skin,” Peranteau said. “That was exciting.”

“We could see the persistence of the effect on the skin as the mouse got older,” Peranteau said. This indicated to the researchers that they had successfully targeted progenitor cells within the skin. “The change we made could last throughout the mouse’s entire life.”

Niren Murthy, a bioengineer at the University of California, Berkeley who was not involved in the study, said that this technology has a lot of potential. Murthy explained that by targeting progenitors, the technique could potentially target cells throughout the body more easily than conventional gene therapy delivery techniques used in adults. “It’s much, much easier to transfer to 10 cells than it is 10 million cells,” he said. However, a big challenge that remains for these types of approaches is that people are hesitant to experiment on unborn children, said Murthy. “But there’s a certain fraction of childhood diseases that could be eradicated by in utero delivery.”

“It’s still very early, very proof of concept. I don’t think there’s a translational lesson to learn at this point. It’s just showing that it’s possible to deliver mRNA via lipid nanoparticles into the amniotic fluid and target fetal skin,” Murthy cautioned.

  1. Francis JS. Genetic skin diseases. Curr Opin in Pediatr. 1994;6(4):447-453.
  2. Bardhan A, et al. Epidermolysis bullosa. Nat Rev Dis Primers. 2020;6(1):78.
  3. Hou X, et al. Author Correction: Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;7(1):65-65.
  4. Gao K, et al. In utero delivery of mRNA to the heart, diaphragm and muscle with lipid nanoparticles. Bioact Mater. 2023;25:387-398.
  5. Riley RS, et al. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci Adv. 2021;7(3):eaba1028.

Note: This article was updated to accurately reflect William Peranteau's affiliation.

Keywords

Meet the Author

  • A black and white headshot

    Natalia Mesa, PhD

    Natalia Mesa was previously an intern at The Scientist and now freelances. She has a PhD in neuroscience from the University of Washington and a bachelor’s in biological sciences from Cornell University.
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Stem Cell Strategies for Skin Repair

Stem Cell Strategies for Skin Repair

iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo

Products

dispensette-s-group

BRAND® Dispensette® S Bottle Top Dispensers for Precise and Safe Reagent Dispensing

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo