Dinos Not Necessarily Cold-Blooded

The leading argument for dinosaurs being cold-blooded is overturned as a nearly identical bone structure is found in mammals.

Written byHayley Dunning
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

These two have more in common than previously thought. JORGE NAVA OLIVARES, JURASSIC FEC

Dinosaurs weren’t necessarily cold blooded creatures, as is often argued, according to new research published today (June 27) in Nature, which disproved a leading bit of evidence for this claim. Specifically, researchers showed that the dark layers in dinosaur bones that represent pauses in bone growth also exist in more than 40 species of ruminant mammals.

Dinosaur bones contain fibromellar tissue which is indicative of fast growth in mammals, and supports the idea that dinosaurs were actually warm-blooded (endothermic) creatures with high metabolisms. But in the 1980s, paleontologists found that the bones also contained dark layers known as lines of arrested growth (LAGs), which are commonly found in the bones of reptiles and amphibians and were thought to be indicative of cold-bloodedness, or ectothermy: because ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH