Disorder Brings Unity To Far-Flung Disciplines

What can we learn about biological evolution by studying disordered magnetic materials? That kind of question—one that brings together fields that at first seem to have very little in common—might have seemed quite strange before this decade. But during the 1980s there has been a serious and growing effort by some scientists to tackle phenomena common to widely disparate disciplines. This effort has led.to a surprising cross-fertilization among fields that previously enjoyed littl

Written byDaniel Stein
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

What can we learn about biological evolution by studying disordered magnetic materials? That kind of question—one that brings together fields that at first seem to have very little in common—might have seemed quite strange before this decade. But during the 1980s there has been a serious and growing effort by some scientists to tackle phenomena common to widely disparate disciplines. This effort has led.to a surprising cross-fertilization among fields that previously enjoyed little communication. Much of the work has been identified under the rubric “complex systems.”

While the term “complex systems” has come into increasing use, there is still no consensus definition of what it means. Some use it to signify the now well-established area of chaos; others would be referring to cellular automata. The phrase complex systems has been used to denote disordered many-body systems, neural networks, “self-organizing” systems, adaptive algorithms—the list can go on and on. In the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies