Divide, Conquer

By Karen Hopkin Divide, Conquer Michael Glotzer’s built-from-scratch biochemistry, and do-it-yourself genetics and microscopy, have revealed some of the secrets of cell division. © Matthew Gilson Had it not been for that Saturday morning conversation, Michael Glotzer’s career would have taken a markedly different turn. Like all graduate students at the University of California, San Francisco (UCSF), Glotzer rotated thro

Written byKaren Hopkin
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Had it not been for that Saturday morning conversation, Michael Glotzer’s career would have taken a markedly different turn. Like all graduate students at the University of California, San Francisco (UCSF), Glotzer rotated through several labs before choosing the one in which he would do his thesis work. He started off with Harold Varmus, whose trainees were working on everything from retroviral integration to telomeres. He also spent some time in the laboratory of Christine Guthrie. She was using yeast mutants to sort out the components of the splicing machinery. Wowed by the beauty of the genetics, Glotzer was all set to sign on the dotted line. “I had pretty much decided to go to her lab,” he says. “We had to submit our choices on Monday morning.” Then Marc Kirschner called.

Glotzer had been working in Kirschner’s lab on the problem of cell-cycle control. At the time, researchers knew ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery