Do Pathogens Gain Virulence as Hosts Become More Resistant?

Emerging infections provide clues about how pathogens might evolve when farm animals are protected from infection.

| 14 min read
European Rabbit (Oryctolagus cuniculus) adult with advanced stages of myxomatosis Eccles-on-Sea, Norfolk, UK. October
Register for free to listen to this article
Listen with Speechify
0:00
14:00
Share

A house finch (Haemorhous mexicanus) infected with the bacterium Mycoplasma gal­lisepticum.ANDY DAVIS, UNIVERSITY OF GEOROne of the most remarkable events in the history of infectious diseases began at the end of 1950. A smallpox-like virus that was being trialed as a biological control agent for the invasive rabbit populations in Australia escaped from test sites and caused an outbreak of unprecedented scale, speed, and carnage. Within just six months, it had spread up the river systems in four states and was decimating rabbit populations across a million square miles. “In places it was possible to drive for a day or more through country that had previously been swarming with rabbits and see only isolated survivors,” one research team reported.1 Tens, perhaps hundreds, of millions of rabbits were eliminated in that initial wave. For farmers whose livelihoods were being devoured by hordes of rabbits, it was something of a miracle.

To everyone’s delight, the carnage continued, helped by subsequent deliberate releases in other parts of Australia. Over the ensuing decade, rabbit populations in wide swaths of the country were reduced to a tenth of what they had been.2 Since that time, rabbit populations have rebounded somewhat, but are nowhere near what they once were. The culpable agent, myxoma virus (MYXV), has generated billions of dollars of savings for Australian agricultural industries to date,3 surely one of the most cost-effective interventions in the history of agriculture.

The episode also presented a unique opportunity to study the evolutionary arms race between a pathogen and its host animal. Australian microbiologist Frank Fenner took advantage, setting up just the right experiments at just the right time—and he and colleagues ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Andrew F. Read

    This person does not yet have a bio.
  • Peter J. Kerr

    This person does not yet have a bio.

Published In

October 2017

A Natural Archive

The practical challenges of storing data in DNA

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD
The Scientist Placeholder Image

Streamlining Microbial Quality Control Testing

MicroQuant™ by ATCC logo

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies

waters-logo

How Alderley Analytical are Delivering eXtreme Robustness in Bioanalysis