Do Pathogens Gain Virulence as Hosts Become More Resistant?

Emerging infections provide clues about how pathogens might evolve when farm animals are protected from infection.

Written byAndrew F. Read and Peter J. Kerr
| 14 min read
European Rabbit (Oryctolagus cuniculus) adult with advanced stages of myxomatosis Eccles-on-Sea, Norfolk, UK. October
Register for free to listen to this article
Listen with Speechify
0:00
14:00
Share

A house finch (Haemorhous mexicanus) infected with the bacterium Mycoplasma gal­lisepticum.ANDY DAVIS, UNIVERSITY OF GEOROne of the most remarkable events in the history of infectious diseases began at the end of 1950. A smallpox-like virus that was being trialed as a biological control agent for the invasive rabbit populations in Australia escaped from test sites and caused an outbreak of unprecedented scale, speed, and carnage. Within just six months, it had spread up the river systems in four states and was decimating rabbit populations across a million square miles. “In places it was possible to drive for a day or more through country that had previously been swarming with rabbits and see only isolated survivors,” one research team reported.1 Tens, perhaps hundreds, of millions of rabbits were eliminated in that initial wave. For farmers whose livelihoods were being devoured by hordes of rabbits, it was something of a miracle.

To everyone’s delight, the carnage continued, helped by subsequent deliberate releases in other parts of Australia. Over the ensuing decade, rabbit populations in wide swaths of the country were reduced to a tenth of what they had been.2 Since that time, rabbit populations have rebounded somewhat, but are nowhere near what they once were. The culpable agent, myxoma virus (MYXV), has generated billions of dollars of savings for Australian agricultural industries to date,3 surely one of the most cost-effective interventions in the history of agriculture.

The episode also presented a unique opportunity to study the evolutionary arms race between a pathogen and its host animal. Australian microbiologist Frank Fenner took advantage, setting up just the right experiments at just the right time—and he and colleagues ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

October 2017

A Natural Archive

The practical challenges of storing data in DNA

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies