DOE Embraces Synchrotron Radiation

Synchrotron radiation, once best known to high-energy physicists an an energy-sapping nuisance, is now emerging as an important new research area in its own right. First discovered in the early days of atom smashers, the radiation occurs when charged particles, such as electrons and protons; are rapidly accelerated. The more the particles are forced to speed up or change direction, the more energy they re-release as spontaneous radiation. That energy is, in effect, wasted in high-energy phy

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Synchrotron radiation, once best known to high-energy physicists an an energy-sapping nuisance, is now emerging as an important new research area in its own right. First discovered in the early days of atom smashers, the radiation occurs when charged particles, such as electrons and protons; are rapidly accelerated. The more the particles are forced to speed up or change direction, the more energy they re-release as spontaneous radiation.

That energy is, in effect, wasted in high-energy physics, in which synchrotron radiation remains the principal limiting -factor in the design of new-machines. But for materials scientists, biologists, chemists, and microelectronics researchers, the phenomenon is proving to be more useful than previously thought possible. Because accelerated particles emit an unusually broad spectrum of radiation, scientists can isolate beams of nearly any wavelength from the “white light” of - radiation generated by modem, ring-shaped accelerators known as synchrotrons. Researchers have found they can ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • G. Christopher Anderson

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide