E. coli ages

Researchers hope the simple bacterium could be a model for human aging

Written byGraciela Flores
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The bacterium Escherichia coli, previously considered not susceptible to aging, and thus functionally immortal, does experience aging and death, researchers report in February's PLoS Biology.

"Until recently, people thought that bacteria cannot age," said Martin Ackermann, of the ETH Zentrum, who was not involved in the study. "Then, we published this paper showing aging in bacteria with asymmetric division. The next question was if a visible morphological asymmetry was necessary or whether all bacteria could age. This new paper suggests that aging can actually be found in all bacterial cells, maybe in all living cells."

In the PLoS study, Eric Stewart, of INSERM and Paris 5 René Descartes University, and his colleagues used automated time-lapse microscopy to follow individual bacteria throughout nine subsequent cycles of reproduction and measured several physical parameters in over 35,000 cells. They found that daughter cells that inherited the "old pole" of a dividing parent cell—a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH