ECISTM (Electric Cell-Substrate Impedance Sensing) is the only commercially available technology which continuously monitors TEER under dynamic flow conditions. In their natural environment, endothelial cells are constantly exposed to physical and biochemical stimuli that can alter cell permeability. Laminar shear stress due to blood flow is a principal regulator of systemic endothelial cell gene expression, morphology, and the production of soluble mediators. Its importance is highlighted by pathological processes associated with reduced or absent laminar shear stress, including atherosclerosis. Endothelial transport of macromolecules has been shown to be responsive to flow shear stress, hydrostatic pressure, thermal shock, and agonists such as histamine and thrombin. The ECIS six channel flow array allows 6 independent flow assays to be run simultaneously. Each channel has either one or ten active electrodes allowing researchers to study endothelial permeability in vitro under complex shear flow conditions. Each channel is 0.66mm in height and 5mm wide. ...
Electric Cell-Substrate Impedance Sensing
Multi-channel TEER measurement under Dynamic Flow Conditions
