Energetic senescence

Credit: Courtesy of Thomas von Zglinicki and PLoS Biology" /> Credit: Courtesy of Thomas von Zglinicki and PLoS Biology The paper: J. F. Passos et al., "Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence," PLoS Biology, 5:1138, 2007. (Cited in 31 papers) The study: To investigate why cells senesce at different rates, Thomas von Zglinicki of

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

J. F. Passos et al., "Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence," PLoS Biology, 5:1138, 2007. (Cited in 31 papers)

To investigate why cells senesce at different rates, Thomas von Zglinicki of the University of Newcastle and colleagues examined mitochondrial dysfunction in cultured fibroblasts. They found that reactive oxygen species (ROS) were produced by mitochondria in senescent cells. This ROS boost caused telomere shortening, a hallmark of cellular senescence; conversely, reducing ROS production delayed the cells' senescence.

Von Zglinicki's "was one of the first labs to show the effects of oxidative stress on telomere length," says Gordon Lithgow of the Buck Institute for Age Research in Novato, Calif. This was thought to be a cell-autonomous mechanism, but this paper "adds another dimension to what might drive telomere shortening," says Judy Campisi, also of the Buck Institute, by showing that "that ROS can also come from within the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Alla Katsnelson

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours