Energy from E. coli

From left: Jay Keasling with Francesco Pingitore and Chris Petzold. Credit: Courtesy of Lawrence Berkeley Nat'l Lab - Roy Kaltschmidt, photographer" />From left: Jay Keasling with Francesco Pingitore and Chris Petzold. Credit: Courtesy of Lawrence Berkeley Nat'l Lab - Roy Kaltschmidt, photographer Jay Keasling watches as 700 billion Escherichia coli swish around inside a benchtop bioreactor in the brand-spanking new

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Jay Keasling watches as 700 billion Escherichia coli swish around inside a benchtop bioreactor in the brand-spanking new fermentation room of the Joint BioEnergy Institute in Emeryville, Calif. Seven copper pipes line the wall with a ready supply of nitrogen, oxygen, water, and other essentials, while an automated controller-looking like a souped-up frozen yogurt machine-regulates the temperature, pH, and oxygenation of the cloudy solution brewing within this one liter tank. This isn't just any E. coli multiplying inside, Keasling says proudly, "This is a strain we engineered and now it's producing biodiesel."

If anyone can marshal in the new era of alternative energy, it may well be Keasling, a bioengineer at the University of California, Berkeley, and the CEO of JBEI, which is a US Department of Energy-sponsored partnership between three California universities and three national laboratories. In the last five years, Keasling has coaxed yeast to synthesize the antimalarial ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Brendan Borrell

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio