Energy from E. coli

From left: Jay Keasling with Francesco Pingitore and Chris Petzold. Credit: Courtesy of Lawrence Berkeley Nat'l Lab - Roy Kaltschmidt, photographer" />From left: Jay Keasling with Francesco Pingitore and Chris Petzold. Credit: Courtesy of Lawrence Berkeley Nat'l Lab - Roy Kaltschmidt, photographer Jay Keasling watches as 700 billion Escherichia coli swish around inside a benchtop bioreactor in the brand-spanking new

Written byBrendan Borrell
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Jay Keasling watches as 700 billion Escherichia coli swish around inside a benchtop bioreactor in the brand-spanking new fermentation room of the Joint BioEnergy Institute in Emeryville, Calif. Seven copper pipes line the wall with a ready supply of nitrogen, oxygen, water, and other essentials, while an automated controller-looking like a souped-up frozen yogurt machine-regulates the temperature, pH, and oxygenation of the cloudy solution brewing within this one liter tank. This isn't just any E. coli multiplying inside, Keasling says proudly, "This is a strain we engineered and now it's producing biodiesel."

If anyone can marshal in the new era of alternative energy, it may well be Keasling, a bioengineer at the University of California, Berkeley, and the CEO of JBEI, which is a US Department of Energy-sponsored partnership between three California universities and three national laboratories. In the last five years, Keasling has coaxed yeast to synthesize the antimalarial ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH