Epigenetic Changes in Cancer

By Manel Esteller Epigenetic Changes in Cancer The study of how covalent marks on DNA and histones are involved in the origin and spread of cancer cells is also leading to new therapeutic strategies. Lung cancer close-up MOREDUN ANIMAL HEALTH LTD/SPL / Gettyimages Much of the current hype in epigenetics stems from the recognition of its role in human cancer. Yet, intriguingly, the first epigenetic change in human tumors—global genomic DNA hypomethylatio

Written byManel Esteller
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Much of the current hype in epigenetics stems from the recognition of its role in human cancer. Yet, intriguingly, the first epigenetic change in human tumors—global genomic DNA hypomethylation—was reported way back in the early 1980s, at about the same time the first genetic mutation in an oncogene was discovered.1 So why the delay in recognizing the importance of epigenetics in cancer?

In the 1980s epigenetics was a fledgling discipline, hampered by methodological limitations, while genetic knowledge of cancer was expanding exponentially. By the mid-1990s however, classical tumor suppressor genes, such as p16INK4a, hMLH1, and VHL,2 were shown to undergo a specific epigenetic hit (the inactivation of gene expression by CpG island hypermethylation), resulting in a major acceleration in the field. We now know that so-called “epigenetic changes” explain many hallmark features of malignant disease: these genes are deregulated not at the DNA level, but at the complexly packaged chromatin ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH