Epigenetic Changes in Cancer

By Manel Esteller Epigenetic Changes in Cancer The study of how covalent marks on DNA and histones are involved in the origin and spread of cancer cells is also leading to new therapeutic strategies. Lung cancer close-up MOREDUN ANIMAL HEALTH LTD/SPL / Gettyimages Much of the current hype in epigenetics stems from the recognition of its role in human cancer. Yet, intriguingly, the first epigenetic change in human tumors—global genomic DNA hypomethylatio

| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Much of the current hype in epigenetics stems from the recognition of its role in human cancer. Yet, intriguingly, the first epigenetic change in human tumors—global genomic DNA hypomethylation—was reported way back in the early 1980s, at about the same time the first genetic mutation in an oncogene was discovered.1 So why the delay in recognizing the importance of epigenetics in cancer?

In the 1980s epigenetics was a fledgling discipline, hampered by methodological limitations, while genetic knowledge of cancer was expanding exponentially. By the mid-1990s however, classical tumor suppressor genes, such as p16INK4a, hMLH1, and VHL,2 were shown to undergo a specific epigenetic hit (the inactivation of gene expression by CpG island hypermethylation), resulting in a major acceleration in the field. We now know that so-called “epigenetic changes” explain many hallmark features of malignant disease: these genes are deregulated not at the DNA level, but at the complexly packaged chromatin ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Manel Esteller

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide