Epigenetic Changes in Cancer

By Manel Esteller Epigenetic Changes in Cancer The study of how covalent marks on DNA and histones are involved in the origin and spread of cancer cells is also leading to new therapeutic strategies. Lung cancer close-up MOREDUN ANIMAL HEALTH LTD/SPL / Gettyimages Much of the current hype in epigenetics stems from the recognition of its role in human cancer. Yet, intriguingly, the first epigenetic change in human tumors—global genomic DNA hypomethylatio

Written byManel Esteller
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Much of the current hype in epigenetics stems from the recognition of its role in human cancer. Yet, intriguingly, the first epigenetic change in human tumors—global genomic DNA hypomethylation—was reported way back in the early 1980s, at about the same time the first genetic mutation in an oncogene was discovered.1 So why the delay in recognizing the importance of epigenetics in cancer?

In the 1980s epigenetics was a fledgling discipline, hampered by methodological limitations, while genetic knowledge of cancer was expanding exponentially. By the mid-1990s however, classical tumor suppressor genes, such as p16INK4a, hMLH1, and VHL,2 were shown to undergo a specific epigenetic hit (the inactivation of gene expression by CpG island hypermethylation), resulting in a major acceleration in the field. We now know that so-called “epigenetic changes” explain many hallmark features of malignant disease: these genes are deregulated not at the DNA level, but at the complexly packaged chromatin ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies