Epigenetics of Regeneration

Repairing damaged neurons relies on booting a histone deacetylase out of the nucleus so regeneration genes can be turned on.

abby olena
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

CELL IN DISTRESS: In cultured neurons, damage to the axon results in a wave of calcium ions surging toward the cell body (1). Subsequently, the enzyme PKCμ is phosphorylated (2), resulting in the release of histone deacetylase 5 (HDAC5) from the nucleus (3). Following HDAC5’s departure, acetylation of histone H3 increases (4), upregulating the expression of genes involved in regeneration. HDAC5 then ends up congregating at the site of injury (5). © SCOTT LEIGHTON

The paper
Y. Cho et al., “Injury-induced HDAC5 nuclear export is essential for axon regeneration,” Cell, 155:894–908, 2013.

To regenerate after injury, a nerve cell must turn on gene programs that have been silenced since development. Epigenetic modifications, important players in the activation and silencing of genes, may underlie the ability for a cell to rebuild. “At some level, some epigenetic change must occur globally to allow the neuron to reprogram itself,” says Valeria Cavalli of the Washington University School of Medicine in St. Louis, Missouri.

In 2012, Cavalli’s group showed that when axons are injured in peripheral sensory neurons, a wave of calcium ions courses from the site of the injury down the axon to the cell body. Subsequently, histone deacetylase 5 (HDAC5)—an epigenetic ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio