Faulty Freezing

Researchers show that tissues are more likely than single cells to suffer damage during cryopreservation because of the tight junctions between cells.

Written byAbby Olena, PhD
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A pair of MIN6 cellsADAM HIGGINS AND JENS KARLSSONCryopreservation of individual cells—most often germ cells, like sperm or eggs—can be accomplished with relatively little damage to the specimens, but freezing tissues or organs is significantly more challenging. One reason for the difficulty is that connected cells are prone to intracellular ice formation (IIF), which is usually lethal. It had been proposed that the gap junctions between cells in a tissue allow IIF to spread, but now researchers show that it is actually defects in the tight junctions that permit ice to penetrate the cells in tissues. The work is published today in the Biophysical Journal.

The paper “has important implications in explaining ice formation and the ensuing injury in tissues, a poorly understood phenomenon in cryobiology and regenerative medicine research,” John Bischof, a professor of mechanical engineering at the University of Minnesota, who was not involved in the work, wrote in an e-mail.

For this investigation, study coauthors Jens Karlsson, an associate professor of mechanical engineering at Villanova University in Pennsylvania, and Adam Higgins, an assistant professor in the School of Chemical, Biological, and Environmental Engineering at Oregon State University, used adherent mouse MIN6 insulinoma cells, which stick together in pairs. They used MIN6 cell lines with normal gap junctions and those that were treated with antisense RNA to the gap junction protein connexin-36. The researchers recorded high-speed cryomicroscopy videos ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies