Fine Tuning Muscle Control with Light

By leveraging optogenetic stimulation for more precise muscle activation, scientists hope to advance neuroprosthetic technology.

Claudia López Lloreda, PhD
| 3 min read
A robot hand makes contact with a human finger on a dark blue background.

Researchers used optogenetics to control muscles in mice, an approach that may reduce the muscle fatigue associated with conventional stimulation with neuroprosthetic devices.

©istock, Shutter2U

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

In the last few decades, individuals with mobility issues have seen a flurry of advancements in neuroprosthetic devices, artificial systems that seek to replace a particular sensation or lost ability. Current neuroprosthetics use electrical stimulation to activate the muscles that lack natural electrical inputs from nerves, an approach called functional electrical stimulation (FES). Despite its success, the approach has limitations, including muscle fatigue.

Now, a team of neuroscientists reported a new technique that activating muscle engineered to respond to light, which allows for more precise muscle control. Their findings, published in Science Robotics, could potentially improve neuroprosthetics.1

Researchers and clinicians alike use FES devices to help individuals with limited mobility. However, FES works opposite to how muscles are naturally activated: it triggers the large fatigue-prone nerve fibers before it brings the smaller, fatigue-resistant units online. As a result, FES quickly tires out the muscles after only a few minutes of stimulation. “It’s hard to regulate the force and you lose precision,” said Andrew Schwartz, a neuroengineer at the University of Pittsburgh who was not involved with the study.

To improve on this approach, Hugh Herr, a neuroscientist at the Massachusetts Institute of Technology (MIT) and coauthor of the study, turned to optogenetics, a technique that allows scientists to control cell activity using light.

Specifically, Herr and his team engineered a functional optogenetic stimulation (FOS) approach that uses light to activate nerves and their connected muscles. Then, the researchers put FES and FOS in a head-to-head battle to see which one was better at stimulating muscles. Researchers delivered neural stimulation to the nerves of anesthetized mice and measured the resultant force in a specific muscle. As the researchers gradually increased light stimulation with FOS, the muscle force followed suite, exhibiting a steady increase. In contrast, FES caused the muscle to quickly reach nearly 80 percent of the total force before plateauing even with low levels of electrical stimulation.

When the team extended the experiment to an hour, they found that the muscle that received electrical stimulation fatigued after 15 minutes. In contrast, the muscle activated with light sustained its force the whole time. “It’s really remarkable that we can track for an entire hour without the muscle even resting,” Herr said.

With FOS, the muscle also more reliably mirrored the different stimulation patterns supplied to the nerves, a parameter called fidelity. “You get out what you expect to get out,” said Schwartz. With FES, the muscle activity looked distorted. Schwartz hypothesized that FOS is better at mimicking the sequence of events that naturally occur during muscle stimulation, leading to improved precision and fidelity.

Due to its gradual nature, FOS is a better alternative to FES and could allow for more fine-tuned modulation of muscles when using neuroprosthetics, according to Schwartz. “You could do more dexterous movements of the fingers,” said Schwartz. “With FES, most subjects would close the whole hand together but with FOS we might be able to precisely control the fingers and the amount of force that each finger exerts.”

Both Herr and Schwartz acknowledged that as FOS relies on the expression of light-sensitive proteins, which are delivered through viruses to the body, it still faces a mountain of challenges before the technology can reach patients. Yet, Herr remains hopeful that optogenetic stimulation could be the future of neuroprosthetics. In addition to safer and more effective delivery vehicles, the researchers need to achieve long-lasting expression of the light-sensitive proteins and overcome the challenges of delivering light to the peripheral nerves to activate the nerve fibers.

“Then optogenetics will not only be a powerful scientific tool, but also a remarkably effective clinical tool,” said Herr.

Keywords

Meet the Author

  • Claudia López Lloreda, PhD

    Claudia Lopez-Lloreda, PhD

    Claudia is an intern at The Scientist with a background in neuroscience. Her work has appeared in Science, Nature, Science News, and Scientific American.
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide