Fluke Forces

Dolphins prove that they rely on muscle power, rather than a trick of fluid dynamics, to race through water at high speeds.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

MIGHTY FLIPPERS: Dolphins are able to swim so rapidly by generating large amounts of power from the oscillations of their flukes.COURTESY OF FRANK E. FISH

Writing in the Journal of Experimental Biology in 1936, British zoologist James Gray made a simple calculation based on observations of a dolphin swimming alongside a ship in the Indian Ocean. The dolphin, he reported, had passed the vessel, from stern to bow, in 7 seconds. The ship was 41 meters long and it was moving at 8.5 knots. “This dolphin must therefore have been travelling at 20 knots [10.1 meters per second],” wrote Gray, who concluded, after an avalanche of more complex calculations, that dolphins couldn’t possibly have attained that speed using muscle power alone.

In an attempt to resolve the quandary, which became known as “Gray’s paradox,” he suggested that dolphins must use some trick of fluid dynamics to overcome drag, the opposing ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Dan Cossins

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio