From kinase to cancer

From kinase to cancer The story of discovering PI3 kinase, and what it means for a fundamental pathway in cancer. By Lewis Cantley Related Articles 1 I suspected that this enzyme might be placing a phosphate on the 3 position of the inositol ring to produce phosphatidylinsitol-3-phosphate (PI-3-P), but I realized that this would be heretical to the field and would require rigorous chemical proof, since PI-3-P had not been previously described. So, at the Col

| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

By Lewis Cantley

1 I suspected that this enzyme might be placing a phosphate on the 3 position of the inositol ring to produce phosphatidylinsitol-3-phosphate (PI-3-P), but I realized that this would be heretical to the field and would require rigorous chemical proof, since PI-3-P had not been previously described.

So, at the Cold Spring Harbor meeting I sought out Bob Michel and Peter Downes, two of the most experienced biochemists in this field, and told them of our findings. While both were skeptical that a novel phosphoinositide had been missed after more than 35 years of research in this field, they both offered advice about how to prove the structure and Downes agreed to collaborate in this endeavor. With Downes' help, we were able to unambiguously define the structure and thereby reveal a new phosphatidylinositol 3-kinase (PI3K) signaling pathway.2 Its significance, however, remained unclear.

The 1980s were an exciting ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Lewis Cantley

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide