From Simple To Complex

By Jef Akst From Simple To Complex The switch from single-celled organisms to ones made up of many cells has evolved independently more than two dozen times. What can this transition teach us about the origin of complex organisms such as animals and plants? Sean McCabe Given the complexity of most organisms—sophisticated embryogenesis, differentiation of multiple tissue types, intricate coordination among millions of cells—the emergence of multicel

Written byJef Akst
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

Given the complexity of most organisms—sophisticated embryogenesis, differentiation of multiple tissue types, intricate coordination among millions of cells—the emergence of multicellularity was ostensibly a major evolutionary leap. Indeed, most biologists consider it one of the most significant transitions in the evolutionary history of Earth’s inhabitants. But single-celled organisms have stuck together or assembled to spawn multicellular descendants more than two dozen times, suggesting that maybe it’s not such a big leap after all.

1 “These genes that we previously thought were associated with complex multicellular animals really have to do with basic multicellular functions—to get the simplest multicellular animals, you have to have these genes present,” says Srivastava, who coauthored the analysis.

As some of the most ancient animals, sponges can provide information regarding the evolution of the metazoan lineage, but for true insights about the origin of multicellularity, scientists must look even further back on the evolutionary tree. Choanoflagellates, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery