Fungus-Fighting Genes

Two genes from wild relatives of wheat could save domestic wheat from fungal destruction.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Stem rust fungus on wheatEVANS LAGUDAH, ZAKKIE PRETORIUSA recently emerged strain of the wheat-destroying fungus called stem rust is threatening 90 percent of the world’s domestic wheat varieties. But, according to two papers published online today (June 27) in Science, this fungal threat may soon be thwarted thanks to genes from hardy wheat relatives that resist the fungus.

“These are the first genes cloned that resist the Ug99 stem rust race that is threatening wheat crops worldwide,” said Bikram Gill, director of the Wheat Genetics Resource Center at Kansas State University in Manhattan, who was not involved in the research, “so it’s very exciting news.”

Domestic wheat varieties such as those made into bread and pasta provide a staggering 20 percent of the global populations’ calorie intake. But wheat has an enemy in the form of an orangey-red fungus that grows on its stems, ultimately killing the plant. This stem rust fungus has been effectively controlled in domestic wheat for the last 50 years thanks to crossbreeding with varieties containing resistance genes.

In Uganda in 1999, however, stem rust upped the ante. A ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH