Fungus-Fighting Genes

Two genes from wild relatives of wheat could save domestic wheat from fungal destruction.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Stem rust fungus on wheatEVANS LAGUDAH, ZAKKIE PRETORIUSA recently emerged strain of the wheat-destroying fungus called stem rust is threatening 90 percent of the world’s domestic wheat varieties. But, according to two papers published online today (June 27) in Science, this fungal threat may soon be thwarted thanks to genes from hardy wheat relatives that resist the fungus.

“These are the first genes cloned that resist the Ug99 stem rust race that is threatening wheat crops worldwide,” said Bikram Gill, director of the Wheat Genetics Resource Center at Kansas State University in Manhattan, who was not involved in the research, “so it’s very exciting news.”

Domestic wheat varieties such as those made into bread and pasta provide a staggering 20 percent of the global populations’ calorie intake. But wheat has an enemy in the form of an orangey-red fungus that grows on its stems, ultimately killing the plant. This stem rust fungus has been effectively controlled in domestic wheat for the last 50 years thanks to crossbreeding with varieties containing resistance genes.

In Uganda in 1999, however, stem rust upped the ante. A ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development