Fungus Versus Plant

The crop-destroying gray mold fungus uses RNA weapons to disable plant defenses and invade.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Botrytis cinerea on Riesling grapesWIKIMEDIA, TOM MAACKStrike, counter-strike, and so on, ad infinitum. The relationship between pathogens and their hosts is a never-ending, continuously evolving battle. And scientists have now discovered that one plant pathogen even hijacks its host’s defense system for its own use. According to a report published online today (October 3) in Science, the gray mold fungus, Botrytis cinerea, deploys small, non-coding RNAs (sRNAs) that subvert the plant’s silencing machinery, forcing it to suppress the expression of host immune system genes.

“We know we’re always going to see defense and counter-defense,” said David Baulcombe, a professor of plant sciences at Cambridge University, who was not involved in the work. “But what is novel about this one is that . . . the counter-defense system is firstly an RNA molecule, which is new, and secondly . . . it moves from a fungal to a plant cell and that, too, is quite novel.”

Hailing Jin, a professor of plant pathology and microbiology at the University of California, Riverside, who led the new study, was intrigued to discover that a fungus uses RNAs to attack plants. She had been searching for sRNAs induced upon infection, but had assumed that they would be produced by the plants themselves. After ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies