Fungus Versus Plant

The crop-destroying gray mold fungus uses RNA weapons to disable plant defenses and invade.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Botrytis cinerea on Riesling grapesWIKIMEDIA, TOM MAACKStrike, counter-strike, and so on, ad infinitum. The relationship between pathogens and their hosts is a never-ending, continuously evolving battle. And scientists have now discovered that one plant pathogen even hijacks its host’s defense system for its own use. According to a report published online today (October 3) in Science, the gray mold fungus, Botrytis cinerea, deploys small, non-coding RNAs (sRNAs) that subvert the plant’s silencing machinery, forcing it to suppress the expression of host immune system genes.

“We know we’re always going to see defense and counter-defense,” said David Baulcombe, a professor of plant sciences at Cambridge University, who was not involved in the work. “But what is novel about this one is that . . . the counter-defense system is firstly an RNA molecule, which is new, and secondly . . . it moves from a fungal to a plant cell and that, too, is quite novel.”

Hailing Jin, a professor of plant pathology and microbiology at the University of California, Riverside, who led the new study, was intrigued to discover that a fungus uses RNAs to attack plants. She had been searching for sRNAs induced upon infection, but had assumed that they would be produced by the plants themselves. After ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH