Gene controls beak morphology

Scientists have pinpointed a molecular basis for size variations in the beaks of Galapagos finches', a phenomenon observed by Charles Darwin more than a century and a half ago.In this week's issue of Science, Harvard University developmental biologist Cliff Tabin and colleagues identified bone morphogenetic protein (Bmp)-4 as a key player in the pathway controlling avian beak development. His team includes Peter and Rosemary Grant, whose research endeavors on the islands were recorded in Jonatha

Written byMaria Anderson
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Scientists have pinpointed a molecular basis for size variations in the beaks of Galapagos finches', a phenomenon observed by Charles Darwin more than a century and a half ago.

In this week's issue of Science, Harvard University developmental biologist Cliff Tabin and colleagues identified bone morphogenetic protein (Bmp)-4 as a key player in the pathway controlling avian beak development. His team includes Peter and Rosemary Grant, whose research endeavors on the islands were recorded in Jonathan Weiner's Pulitzer Prize-winning account.

"The idea is that these finches have evolved a mechanism for changing their jaw skeleton rapidly and in response to environmental pressures," explained cell biologist and orthopedic surgeon Jill Helms, who recently moved from the University of California, San Francisco, to Stanford University.

Helms, who was not involved in the study, said that Tabin's group tried to answer a question about beak variations first posed by Darwin himself. "He said ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research