Genome analysis without compare

Method measures selection pressures on a single genome without use of comparative genomics

Written byDavid Secko
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A report in the April 29 Nature describes a novel method for detecting selection pressures on specific proteins using a single genome rather than comparing nucleotide sequences.

Measurement of selection pressure on proteins classically involves the comparison of nucleotide sequences from numerous individuals or species, requiring numerous homologous sequences. This approach can be limited by lack of suitable homologs, unfeasibility of sequencing additional genomes, or proteins lacking recognizable homologs.

“The article describes a new way to analyze DNA sequences to identify all of the genes in a genome that are under pressure both to evolve and not to evolve. The advantage here is that by just taking a single genome you're interested in and looking at that sequence, you can find a hidden footprint without comparing homologous genes,” said Joshua Plotkin, from the Bauer Center for Genomics Research and lead author of the study.

The method relies on a concept ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH