Gut drives bone makeovers

The signals that tell your skeleton to lay down new bone come from an unlikely source -- your gut, according to a study published today (Nov. 26) in Cell. "This study revolutionizes how we think about the skeleton," linkurl:Cliff Rosen,;http://www.mmcri.org/cctr/rosen.html a bone biologist from Maine Medical Center Research Institute who was not involved in the research, told The Scientist. "We, as bone [researchers], thought of the skeleton as functioning independent of everything else," Ros

Written byJennifer Evans
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share
The signals that tell your skeleton to lay down new bone come from an unlikely source -- your gut, according to a study published today (Nov. 26) in Cell. "This study revolutionizes how we think about the skeleton," linkurl:Cliff Rosen,;http://www.mmcri.org/cctr/rosen.html a bone biologist from Maine Medical Center Research Institute who was not involved in the research, told The Scientist. "We, as bone [researchers], thought of the skeleton as functioning independent of everything else," Rosen said. This group "asked the question, 'could there be other regulators outside the skeleton that are regulating bone?' and found the answer to be 'yes.'" The skeleton undergoes constant linkurl:remodeling;http://www.the-scientist.com/news/display/53475/ and through the steady process of absorbing and laying down new bone, renews itself roughly every 10 years, Rosen said. That remodeling process is thrown off linkurl:balance;http://www.the-scientist.com/article/display/13675/ in certain bone diseases or simply with age, resulting in low bone mass, or osteoporosis. linkurl:Earlier studies;http://www.ncbi.nlm.nih.gov/pubmed/11719191 in patients with two types of rare bone diseases that cause high and low bone density, respectively, identified a hormone called LDL-receptor related protein 5 (Lrp5) as a key player in bone remodeling. This finding sparked enthusiasm among bone researchers hungry to identify a drug that could repair bone damage, Columbia University molecular geneticist Patricia Ducy, coauthor on the Cell study, told The Scientist. The majority of drugs on the market arrest bone loss, but fail to promote bone repair, she said. linkurl:Gerard Karsenty,;http://cpmcnet.columbia.edu/dept/genetics/faculties/Karsenty.html a geneticist also at Columbia and senior author on the Cell paper, was studying Lrp5 knockouts, which develop osteoporosis. Microarray studies of gene expression in bone cells identified a surprisingly high expression of tryptophan hydroxylase 1 (Tph1), an enzyme that regulates serotonin production in the gut, in knockouts compared to normal mice. Researchers have long known the duodenum, a region of the small intestine, produces the majority of serotonin found in the body, but unlike serotonin's well-understood role in the brain, its role in the body was less clear. However, there have been linkurl:reports;http://archinte.ama-assn.org/cgi/content/abstract/167/2/188 that some patients taking selective serotonin reuptake inhibitors (SSRI), which increase serotonin levels throughout the body, experience decreases in bone mass. The microarray findings led researchers to take a closer look at the duodenum cells of their Lrp5-deficient mice, Ducy said, where they discovered Tph1 was expressed 15,000-times higher than levels seen in normal mice, suggesting the gut was somehow involved in controlling bone remodeling. To confirm the link between the gut and bone formation, the researchers created transgenics with cell-specific Lrp5-deficiency in the duodenum and bone cells. When Lrp5 was absent in gut cells, circulating serotonin levels were 5- to 8-fold higher than in normal mice and bone mass decreased whereas mice with Lrp5 deficiency in bone cells remained normal. Conversely, blocking Tph1 in the gut cells, but not bone cells, of Lrp5-deficient mice led to increased bone mass. Normal mice experience osteoporosis following menopause, but the Tph1 deficiency was enough to protect the knockouts from osteoporosis. In further gene deletion experiments, they identified the receptor on bone cells through which serotonin signals. "Lrp5 and Tph1 are two partners in crime," Ducy said, with Lrp5 inhibiting expression of Tph1 and serotonin. "In the absence of Lrp5, you have more Tph1 and serotonin" expressed in the gut. The group also obtained serum from patients with the high and low bone density diseases linked to Lrp5, Karsenty said. Patients with the low bone density disease had raised serotonin levels, and those with high bone mass disease had suppressed serotonin levels, suggesting "this is more than just a mouse study," he said. Serotonin is "a schizophrenic molecule, working differently in the body depending on whether it's upstairs or downstairs," Ducy said. "What's important is serotonin does not cross blood-brain barrier," she added, making it an attractive drug target for treating osteoporosis -- inhibiting Tph1 in the body wouldn't affect serotonin levels in the brain.
Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies