Harvesting Ideas

Joy Ward is reaping the rewards of her studies on how plants handle global climate change—gathering academic accolades and presidential embraces along the way.

Written byKaren Hopkin
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

JOY WARD Associate Professor of Plant Physiological Ecology and Global Change, University of Kansas F1000 Faculty Member, Physiological Ecology JASON DAILEY

As a teen, Joy Ward worked as a tour guide at Indian Caverns, Pennsylvania’s largest limestone cave. “It was one of the things that influenced my early interest in science,” she says. “Imagine: seven or eight times a day you pick up a new tour group and give a talk about what a cave is like and how a cave is formed and all about the geology. Then you get drilled with questions. I can’t imagine a more perfect experience for a future scientist.”

Although the caverns were tame by spelunking standards, Ward continued to explore caves during her undergraduate years at Penn State University. “I’m not really into doing life-threatening things,” she says—and her closest call actually occurred outside a cave: a sudden sleet ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH