High-Throughput Analysis of Viral Composition, Entry Kinetics, and Conformational Changes

In this webinar, our panelist will describe how his lab uses flow cytometry and surrogate virus particles to transform technical and biosafety challenges into a new model for study of virus-cell fusion.

Written byThe Scientist Marketing Team
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Viral fusion with the cell membrane is essential for infection by enveloped viruses. For BSL4 (biosafety level 4) human pathogens such as the deadly Nipah virus (NiV), mechanistic studies of the fusion process are particularly challenging, as cell-cell fusion assays do not fully recapitulate the variables of viral entry into cells. In this webinar, our panelist will describe how his lab uses flow cytometry and surrogate virus particles to transform technical and biosafety challenges into a new model for study of virus-cell fusion. Following the presentation, attendees will have an opportunity to ask questions concerning their research and receive answers in real-time.

Topics to be covered:


Dr. Hector Aguilar-Carreno
Assistant Professor
Paul G. Allen School for Global Animal Health
Washington State University

Protein Simple

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH