Holding Their Ground

To protect the global food supply, scientists want to understand—and enhance—plants’ natural resistance to pathogens.

| 12 min read

Register for free to listen to this article
Listen with Speechify
0:00
12:00
Share

© ANDRZEJ WOJCICKI/SCIENCE PHOTO LIBRARYPlant pathologist Jean Ristaino hunts down crop-threatening diseases all over the world. Last year, in the span of two months, she visited India, Uganda, and Taiwan to help colleagues track the fungus Phytophthora infestans, which infects tomatoes and potatoes and caused numerous famines in 19th-century Europe. Ristaino tracks the pathogen’s modern march using farmers’ online reports of outbreaks of the disease, called late blight; then she travels to those locations to collect fungal samples. In her lab at North Carolina State University in Raleigh, Ristaino’s team genotypes fungi from these farms to trace their origins and monitor how P. infestans’s genome is changing in response to fungicide use and how it’s subverting immune strategies the host plants use to defend themselves.

Just like animals, plants have to fight off pathogens looking for an unsuspecting cell to prey on. Unlike animals, however, plants don’t have mobile immune cells patrolling for invaders. “Every cell has to be an immune-competent cell,” says Jeff Dangl, who studies plant-microbe interactions at the University of North Carolina at Chapel Hill.

Decades of work on model plants such as Arabidopsis thaliana have revealed robust cellular immune pathways. First, plasma membrane receptors recognize bits of pathogen and kick-start signaling cascades that alter hormone levels and immune-gene expression. This triggers the cell to reinforce its wall and to release reactive oxygen species and nonspecific antimicrobial compounds to fight the invaders. These responses can also be ramped up and prolonged by a second immune pathway, which ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Amanda B. Keener

    This person does not yet have a bio.

Published In

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Stem Cell Strategies for Skin Repair

Stem Cell Strategies for Skin Repair

iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo

Products

dispensette-s-group

BRAND® Dispensette® S Bottle Top Dispensers for Precise and Safe Reagent Dispensing

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo