CHARLES HAYNES, FLICKRRice (Oryza sativa) is a staple crop for half of the world’s population, but it can accumulate high levels of arsenic. When consumed over time, arsenic can lead to cancer and skin lesions. But the plant has its own mechanisms for fighting arsenic accumulation, according to a paper published today (October 20) in PNAS. Researchers based in Korea and Japan have shown that a rice transporter protein called OsABCC1 prevents arsenic from damaging plant tissues by sequestering the element in vacuoles. Because of this, potentially harmful arsenic remains in these cellular waste containers rather than building up in rice grains.
“What they have shown in this paper is really quite impressive,” said Andy Meharg, chair of plant and soil science at Queen’s University Belfast in the U.K. “The difference between having these ABC transporters and not having them is very, very large.”
The researchers now hope to find rice plants that express high levels of OsABCC1 or to genetically engineer rice to overexpress the transporter. This strategy “offers one of the simplest and most cost-effective approaches to solving the problem of arsenic contamination of rice and rice-based products,” Mary Lou Guerinot, who studies metal transport at Dartmouth College, wrote in an e-mail to The Scientist.
Rice accumulates arsenic both because of its growing conditions and biology. The crop is often grown in flooded rice paddy ...