In like a lion, out like a lamb...

University of Washington genome scientist, Maynard Olson, spoke this weekend at a symposium at Cold Spring Harbor Laboratory in honor of the 60th anniversary of the phage course, where he discussed molecular evolution in chronic bacterial infections. Analysis of whole genome sequences of Pseudomonas aeruginosa, a pathogen responsible for chronic lung colonization in patients with cystic fibrosis, reveals an evolutionary ?weakening? of the bacterium over time, resulting in a much less virulent or

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share
University of Washington genome scientist, Maynard Olson, spoke this weekend at a symposium at Cold Spring Harbor Laboratory in honor of the 60th anniversary of the phage course, where he discussed molecular evolution in chronic bacterial infections. Analysis of whole genome sequences of Pseudomonas aeruginosa, a pathogen responsible for chronic lung colonization in patients with cystic fibrosis, reveals an evolutionary ?weakening? of the bacterium over time, resulting in a much less virulent organism. Comparing sequences from P. aeruginosa isolates obtained from a patient at 6 months and 96 months of age, with a 97% detection rate, found that 68 mutations had occurred in the late isolate compared to the original wild type. Many mutations were found in virulence genes. One large deletion removed 139 genes. Furthermore, the mutant isolate was sickly and difficult to grow in vitro. ?You overwhelmingly see loss of function mutations,? says Olson. ?There is positive selection to get rid of genes not selected for in the environment.? The findings suggest a microenvironmental heterogeneity, with increasing homogeneity occurring as infection progresses. Several of the genes mutated in this patient were also found to be mutated frequently in other patients as well. Nevertheless, progressive lung destruction continues despite the presence of a less virulent strain. The damage stems from the lungs being caught in the crossfire between infection and host immune responses. These unexpected findings may prove useful for developing novel therapies - desperately needed given high rates of antibiotic resistance among P. aeruginosa. Olson says exploiting new genotypic vulnerabilities in bacteria that are capable of establishing chronic infection may prove highly useful for identifying novel drug targets.
Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Nicole Johnston

    This person does not yet have a bio.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

An illustration of different-shaped bacteria.

Leveraging PCR for Rapid Sterility Testing

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad