In Search of Genomic Variation

The fairly nebulous term mutation detection addresses two fundamentally different questions: "Do any mutations-or, more broadly, polymorphisms or variations-exist in a given gene?" "How frequently does a specific mutation occur in a population?" Getting the answer to each question presents different challenges, and scientists must address each using different technologies. The first question is answered with mutation scanning or screening techniques, the second with mutation scoring, or genot

Written byLaura Defrancesco
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

"How frequently does a specific mutation occur in a population?"

Getting the answer to each question presents different challenges, and scientists must address each using different technologies. The first question is answered with mutation scanning or screening techniques, the second with mutation scoring, or genotyping methods. Because mutation-scoring technologies were reviewed last year,1 screening techniques are addressed here.

A world of difference exists between mutation screening and mutation scoring, says Joe Rudolph, a senior applications scientist at Omaha, Neb.-based Transgenomic. Many companies offer products for "SNP (single nucleotide polymorphism) detection," which are really scoring technologies. To actually screen for polymorphisms requires a tremendous amount of time and resources. Such studies require genetic material from hundreds or thousands of individuals, especially when hunting for rare variations. Cost is a key consideration. A reagent that costs $2 per sample is fine for routine lab work, but it becomes prohibitively expensive when that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies