Insects Showcase Unexpected Ways to Make Water-Repellent Surfaces

The intersection between water, air, and insects’ intricately decorated surfaces turn out to be the key to explain why droplets bounce so quickly off of them.

Written byViviane Callier
| 4 min read
mosquito compound eye nanostructure water repellent insect

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: An optical image of a mosquito. Inset shows the compact arrangement of nanoscale textures on its compound eye (15,000× magnification).
LIN WANG, PENN STATE

For the last several decades, the lotus leaf has been the model for slippery, water-repellent surfaces. The leaf is covered in micro-scale pillars that are decorated with tiny structures, like a microscopic forest, explains Penn State materials scientist Tak-Sing Wong. The density of the “trees” is relatively low, creating a thin layer of air between the lotus leaf surface and the canopy. When a water droplet lands on the lotus leaf, it sits on the pocket of air and becomes very mobile, like a puck on an air hockey surface.

It stands to reason that other water-repellent organisms might also use this strategy, but to the surprise of Wong and his colleagues, that’s not what they found in their latest investigation mosquito eyes, cicada wings, and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Viviane was a Churchill Scholar at the University of Cambridge, where she studied early tetrapods. Her PhD at Duke University focused on the role of oxygen in insect body size regulation. After a postdoctoral fellowship at Arizona State University, she became a science writer for federal agencies in the Washington, DC area. Now, she freelances from San Antonio, Texas.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH