Jennifer Elisseeff: Bringing cartilage to light

Credit: BILL CRAMER / WONDERFUL MACHINE INC." /> Credit: BILL CRAMER / WONDERFUL MACHINE INC. In Jennifer Elisseeff's small tissue-culture room at Johns Hopkins University, she points to an eraser-sized pellet of two-layered hydrogel floating in culture medium. She explains how the cells, encapsulated within juxtaposed layers of gel, exchange signals to help them grow. Knowing what those signals are could help her design a hydrogel that would regenerate diseased tissue. As a teen

Written byEdyta Zielinska
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

In Jennifer Elisseeff's small tissue-culture room at Johns Hopkins University, she points to an eraser-sized pellet of two-layered hydrogel floating in culture medium. She explains how the cells, encapsulated within juxtaposed layers of gel, exchange signals to help them grow. Knowing what those signals are could help her design a hydrogel that would regenerate diseased tissue.

As a teenager working on a science fair project in her father's engineering lab at Florida Atlantic University, Elisseeff began to appreciate the cross-talk between biology and materials while studying the effects of bacteria on metal corrosion. After her first year of medical school in the Harvard/MIT Health Science and Technology program, Elisseeff found a way to apply her interest when she recognized a huge need in the field of orthopedic surgery. Bone and cartilage lack good natural repair mechanisms, and the surgical treatment for the damaged tissue is currently extremely invasive. Elisseeff's "big ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH