JNK2 promotes cJun activation

Credit: Courtesy of Kevan Shokat" /> Credit: Courtesy of Kevan Shokat Applying chemical genetics to mice, Roger Davis at University of Massachusetts Medical School and the Howard Hughes Medical Institute, and colleagues found that JNK2 promotes phosphorylation and activation of cJun.1 "It is an elegant and solid paper that illustrates the power of chemical genetics and it settles a controversy in the field," says Faculty of 1000 member Filippo Giancotti of Memorial Sloan-Kettering Ca

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Applying chemical genetics to mice, Roger Davis at University of Massachusetts Medical School and the Howard Hughes Medical Institute, and colleagues found that JNK2 promotes phosphorylation and activation of cJun.1 "It is an elegant and solid paper that illustrates the power of chemical genetics and it settles a controversy in the field," says Faculty of 1000 member Filippo Giancotti of Memorial Sloan-Kettering Cancer Center in New York.

"Based on the knockout approach, it had been concluded that JNK2 is a negative regulator of cJun and cell proliferation whereas JNK1 promotes this process. [This contradicts] observations that both kinases phosphorylate the same sites in cJun. By introducing in mice a mutant form of JNK2 [that is] exquisitely sensitive to an otherwise inactive kinase inhibitor, the authors demonstrated that JNK2 promotes phosphorylation of cJun and cell proliferation.

This is a particularly vivid illustration that the interpretation of genetic experiments using traditional knockout ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH