John Iversen Explores our Perception of Musical Rhythm

At the Swartz Center for Computational Neuroscience at the University of California, San Diego, the researcher studies the neurobiology of music perception.

Written byVijay Shankar Balakrishnan
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

© FRANK ROGOZIENSKIWhen he was a toddler, John Iversen made his first drum set out of pots and pans. But he soon joined his family of percussionists to play real drums and, as a teenager, founded his own rock band. Iversen became curious about the impact of music on humans and animals while studying physics as a Harvard University undergrad.

“You do find many people studying [the] neuroscience of music are musicians, and I’m no different,” he says.

Auditory physiologist Nelson Kiang in the Eaton-Peabody Laboratory at Harvard/MIT helped Iversen chart his career path. In 1992, Iversen started his PhD research in the lab of Harvard auditory researcher Christian Brown. But he interacted a lot with Kiang, who studied how the ear transmits auditory signals to the brain and the neural processing that follows. “Most graduate students in science nowadays do research really organized and thought through by their supervisors, but John actually researched [his own idea],” Kiang says. “That was an early indication that he would be a creative scientist, rather than someone who just goes through the motions.”

In 2001, Iversen’s study of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

March 2017

Music

The production and neural processing of musical sounds, from birdsong to human symphonies

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH