Keeping immunity in check

Two newly discovered proteins that act as brakes to slow a plant's immune response after infection may provide clues to autoimmune treatments.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ArabidopsisCOURTESY OF LIBO SHAN, TEXAS A&M UNIVERSITY

After a plant has detected and destroyed invading bacteria, its innate immune system must be turned off to prevent a prolonged immune response from damaging the plant's tissues. This downregulation of the immune system in Arabidopsis falls on the shoulders of two novel proteins that target and degrade innate immune receptors after an infection, according to a study published this week in Science.

The mechanism, which has direct parallels in human immune signaling pathways, offers basic insights that might someday help to develop therapeutics against autoimmune diseases, which arise from an overactive immune response.

"It's a beautiful piece of biology," said Luke O'Neill, an immunologist at Trinity College in Dublin, who was not involved in the research. "It's intriguing that the same system is used ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Megan Scudellari

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours