Keeping Track

New software that can trace the individual paths of every animal in a massive swarm could help biologists unravel the secrets of collective behavior.

Written byDaniel Cossins
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

FISH TRACKS: A computer-generated representation of the trajectories of several zebrafish (Danio rerio).ALFONSO PEREZ-ESCUDERO AND SARA ARGANDA

Mackerel shoaling in silvery spheres, flocks of blackbirds billowing like dark clouds, and ant colonies carpeting forest floors—nature boasts some spectacular examples of individual animals coming together to form coordinated hordes. The question of how they accomplish such collective behavior has occupied biologists for decades. But although the majesty of swarms is clear for all to see, the mechanisms that explain how starlings coordinate their speed and direction, say, or how honeybees decide where to make a new hive are far too subtle to be detected by the naked eye. (See “Crowd Control,” The Scientist, July 2013.)

“We need to see the fine-scale trajectories of every individual in a group at the same time so we can know precisely where they’re moving with respect to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH