Kinase Cartography

Courtesy of Zachary Knight  BEAUTIFUL CLEAVAGE: Trypsin cleaving a hypothetical protein into smaller fragments with C-terminal phosphorylated residues--a basis for phosphorylation mapping techniques. Proteins communicate with each other through posttranslational modifications, and locating modified sites is a key challenge in proteomics. Phosphorylation, the most common modification by far, is central to cell signaling, and knowledge of where and when proteins are phosphorylated could he

Written byAileen Constans
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Proteins communicate with each other through posttranslational modifications, and locating modified sites is a key challenge in proteomics. Phosphorylation, the most common modification by far, is central to cell signaling, and knowledge of where and when proteins are phosphorylated could help researchers decipher disease mechanisms, including those for cancer and diabetes.

Because protein modifications are not genetically encoded, it's difficult to track phosphorylation, says chemistry professor Kevan Shokat, University of California, San Francisco. A new technique that swaps phosphorylation sites for other more easily identifiable chemical species may enable fast and widespread identification, aiding researchers in decoding the posttranslational language of proteins. Proteomicists praise the elegance of the procedure, and the work earned first author Zachary Knight a grand prize in the 2002 Collegiate Inventors Competition.

A COURSE CHARTED The most commonly used method for mapping such sites is proteolytic digestion of the protein, followed by tandem mass spectrometry of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH