Life Without Glutamate

HALF FULL, HALF EMPTY, OR ...© 2004 AAASAfter each neurotransmitter release, MK801, an open-channel blocker that can only block a channel that has been activated, decreases initial current (which has been normalized for wild type and mutant cells). In the colocalization model, VGLUT1 and VGLUT2 occupy the same vesicles filling them partially. The commingling model proposes that transporters occupy distinct vesicles in the same synapse. The segregation model proposes that the transporters ar

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

© 2004 AAAS

After each neurotransmitter release, MK801, an open-channel blocker that can only block a channel that has been activated, decreases initial current (which has been normalized for wild type and mutant cells). In the colocalization model, VGLUT1 and VGLUT2 occupy the same vesicles filling them partially. The commingling model proposes that transporters occupy distinct vesicles in the same synapse. The segregation model proposes that the transporters are found in different synapses.

A brain without glutamate, the major excitatory neurotransmitter in mammals, is quite literally unthinkable. Yet, knockout mice lacking the crucial vesicular glutamate transporter, VGLUT1, can live for up to a few months. This unexpected finding has enabled two research groups to investigate the function of VGLUT1.

With potential links to learning and memory, as well as neurological diseases such as epilepsy, approaching glutamate transmission through the protein believed to load it into vesicles provides a useful starting ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • David Secko

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio