Making a Better Protein

Courtesy of XencorIf you're trying to optimize a protein's biological activity, to make it a more potent therapeutic agent, for instance, the selection process can be painstaking. Say you wanted to make one change at a time in a 200-amino acid protein. That's 200 multiplied by 19 (for the other naturally occurring amino acids that your original protein could place at that site), or 3,800 possibilities. Make two changes at a time, and you're in the millions. Make three, and you get the picture. S

Written byIvan Oransky
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Courtesy of Xencor

If you're trying to optimize a protein's biological activity, to make it a more potent therapeutic agent, for instance, the selection process can be painstaking. Say you wanted to make one change at a time in a 200-amino acid protein. That's 200 multiplied by 19 (for the other naturally occurring amino acids that your original protein could place at that site), or 3,800 possibilities. Make two changes at a time, and you're in the millions. Make three, and you get the picture. Streamlining the process by computer hasn't been effective. "Computer models of proteins have not had a great track record of being predictive," says Bassil Dahiyat, chief scientific officer of Monrovia, Calif.-based Xencor.

Xencor hopes it has changed that. Its latest patent (US 6,708,120) covers a computer algorithm that scores, sorts, and selects proteins based on variable amino acid residues. According to Dahiyat, the patent is ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies