Making Mammalian Chromosomes

One traditional gene-therapy method relies on homologous recombination. The desired gene segment is placed on a small plasmid and delivered by virus or liposome, but this approach has variable expression levels and instability, and is limited by a small insert size. Yeast artificial chromosomes circumvent some of these problems, but YACs cannot be propagated in mammalian cells. Now a team of scientists at DNAVEC Research of Ibaraki, Japan, has come up with a solution: They have developed a metho

Written byIvan Oransky
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

One traditional gene-therapy method relies on homologous recombination. The desired gene segment is placed on a small plasmid and delivered by virus or liposome, but this approach has variable expression levels and instability, and is limited by a small insert size. Yeast artificial chromosomes circumvent some of these problems, but YACs cannot be propagated in mammalian cells. Now a team of scientists at DNAVEC Research of Ibaraki, Japan, has come up with a solution: They have developed a method to create artificial mammalian chromosomes.

Chromosomes require three elements, the authors write in US patent 6,716,608: telomeres, a centromere, and an origin of replication. Mammalian telomeric structure is simple enough, consisting of repeated units of the TTAGGG sequence. Centromeres and structures of replication origin, though, are more enigmatic.

To get around this problem, the team inserted human genomic DNA into YACs and looked for so-called alphoid sequences, which are found in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies