Making sense of antisense

The yeast Candida albicans is the major pathogen causing human fungal infections. C. albicans is not amenable to functional genomic strategies used for other micro-organisms, because of mating difficulties, its diploid nature and the lack of random insertional mutagenesis methods.In March Nature Biotechnology Marianne De Backer and colleagues describe an approach to overcoming these limitations, in order to perform a genome-wide screen for gene function (Nature Biotechnology 2001, 19:235-241). T

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The yeast Candida albicans is the major pathogen causing human fungal infections. C. albicans is not amenable to functional genomic strategies used for other micro-organisms, because of mating difficulties, its diploid nature and the lack of random insertional mutagenesis methods.

In March Nature Biotechnology Marianne De Backer and colleagues describe an approach to overcoming these limitations, in order to perform a genome-wide screen for gene function (Nature Biotechnology 2001, 19:235-241). The technique combines antisense RNA and promoter interference technology and involves the development of an integrative vector to drive transcription of antisense RNA in an inducible manner.

De Backer et al created a library of cloned C. albicans DNA fragments, introduced these into C. albicans and screened for the effects of gene suppression on yeast growth. About 10% of transformants showed a growth phenotype and it was possible to identify 86 different genes, of which 38% have no homologues in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research