PHOTOGRAPHY BY KAMIL BIALOUSWhen it came time for Mary O’Connor to declare her major at Brown University, aquatic biology simply happened to be at the top of an alphabetic listing. She had enjoyed other subjects, especially neuroscience, but “it became clear that to be a neuroscientist I would have to spend time indoors decapitating rats,” O’Connor says. Instead, she spent the next three summers back in her native Washington State doing research on mud snails.
Upon graduating from Brown in 2000, O’Connor spent a year traveling before doing outreach work on climate change for the Environmental Defense Fund. Finally, O’Connor’s career goals came into focus. “I was motivated by the lack of science about the ecological impacts of climate change,” she says. “Now I had a reason to go . . . to grad school.” METHODS: In John Bruno’s lab at the University of North Carolina, O’Connor studied metabolic theory—the idea that temperature has a predictable effect on organisms’ development. She and her colleagues found that temperature can have a profound impact on the dispersal of planktonic larvae.1 Warming speeds the development of larvae, and “the faster they develop, the shorter [the amount of time] they spend floating in the ...