Mass Spectrometry and Proteomics

Courtesy of Thermo Electron For years, mass spectrometry has been de rigeur in chemistry labs. Recently, though, it has become a mainstay of proteomics research, too. Two years ago, investment bank UBS Warburg identified proteomics as the fastest- growing application of mass spectrometry, a prediction borne out at this year's American Society for Mass Spectrometry (ASMS) annual meeting, where more than 1,100 of 2,227 presentations discussed some aspect of proteomics. It took a confluence of t

Written byAngelo DePalma
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

For years, mass spectrometry has been de rigeur in chemistry labs. Recently, though, it has become a mainstay of proteomics research, too. Two years ago, investment bank UBS Warburg identified proteomics as the fastest- growing application of mass spectrometry, a prediction borne out at this year's American Society for Mass Spectrometry (ASMS) annual meeting, where more than 1,100 of 2,227 presentations discussed some aspect of proteomics.

It took a confluence of trends to effect this change. First, in the late 1980s, two new ionization methods, MALDI (matrix-assisted laser desorption ionization) and ESI (electrospray ionization), allowed routine mass analysis of large biomolecules. Second, biologists began to recognize that proteins, rather than genes, describe what happens inside cells. Finally, swelling DNA sequence databases, coupled with computers able to search them rapidly, made it possible to identify novel proteins, and the genes that encode them, from MS-derived peptide sequences.

Today, proteomicists use MS ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH