Mendel and More

Photo: Courtesy of M. Matsuoka, Reprinted with permission from Nature ©2001 A COMPARISON: The effect of a mutant gibberellin-biosynthesis gene is shown in rice plants; on the left, wild type; on the right, IR8 (sd1). During the summer of 1997, two research groups succeeded in bringing closure to a classic tale in genetics. After 131 years, they identified one of Mendel's pea genes at the molecular level. The gene, called Le, controls stem length--plants with defective copies are sho

Written byBarry Palevitz
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

During the summer of 1997, two research groups succeeded in bringing closure to a classic tale in genetics. After 131 years, they identified one of Mendel's pea genes at the molecular level. The gene, called Le, controls stem length--plants with defective copies are shorter than normal. Characterized in both pea and Arabidopsis, the gene encodes an enzyme called gibberellin 3b-hydroxylase, which converts two precursors of the growth regulator gibberellin into active forms, including gibberellin 1.1,2 Le was the second of Mendel's genes to be identified. Re-searchers pulled out the first--for a starch-branching enzyme that in defective form causes the wrinkled seed trait--12 years ago.3

Now a gene called GA20ox-2 encoding another enzyme in the gibberellin biosynthetic pathway has been conquered, this time in rice.4 The enzyme is GA20 oxidase, which catalyzes three steps in the pathway leading to production of gibberellin 20, a substrate for the b- hydroxylase. Four alleles ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH