Mice Successfully Reproduce with 3-D Printed Ovaries

Researchers have constructed prosthetic female reproductive organs and implanted them in mice, some of which conceived and gave birth to live young.

Written byBob Grant
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

One of the mouse pups born to a female who was implanted with a 3-D printed ovary, which contained follicles tagged with green fluorescent protein. NATURE COMMUNICATIONS, ISSN 2041-1723Adding to the already substantial list of organs that can be 3-D printed and function more or less normally, researchers have made mouse ovaries using the technique. Some of the live mouse they implanted with the prosthetic organs, after seeding them with egg-containing follicles, had normal young. The team of scientists, from Northwestern University, published the results in Nature Communications today (May 16).

The “landmark study” is a “significant advance in the application of bioengineering to reproductive tissues,” Mary Zelinski, a reproductive scientist at the Oregon National Primate Research Center in Beaverton who was not involved with the research, told Science.

The paper’s authors used a 3-D printer to lay down layers of gelatin, which is derived from collagen, on glass slides until they formed 15 mm x 15 mm scaffolds of varying density. They then inserted mouse follicles—balls of hormone-secreting cells encasing primordial ova—into the scaffolds and found after about a week that the scaffolds with smaller pores better supported follicles.

The researchers then inserted follicle-seeded, printed ovaries into seven female mice whose natural ovaries they had removed. The synthetic ovaries became vascularized within roughly a week, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer. Before joining the team, he worked as a reporter at Audubon and earned a master’s degree in science journalism from New York University. In his previous life, he pursued a career in science, getting a bachelor’s degree in wildlife biology from Montana State University and a master’s degree in marine biology from the College of Charleston in South Carolina. Bob edited Reading Frames and other sections of the magazine.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies