Mice Successfully Reproduce with 3-D Printed Ovaries

Researchers have constructed prosthetic female reproductive organs and implanted them in mice, some of which conceived and gave birth to live young.

Written byBob Grant
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

One of the mouse pups born to a female who was implanted with a 3-D printed ovary, which contained follicles tagged with green fluorescent protein. NATURE COMMUNICATIONS, ISSN 2041-1723Adding to the already substantial list of organs that can be 3-D printed and function more or less normally, researchers have made mouse ovaries using the technique. Some of the live mouse they implanted with the prosthetic organs, after seeding them with egg-containing follicles, had normal young. The team of scientists, from Northwestern University, published the results in Nature Communications today (May 16).

The “landmark study” is a “significant advance in the application of bioengineering to reproductive tissues,” Mary Zelinski, a reproductive scientist at the Oregon National Primate Research Center in Beaverton who was not involved with the research, told Science.

The paper’s authors used a 3-D printer to lay down layers of gelatin, which is derived from collagen, on glass slides until they formed 15 mm x 15 mm scaffolds of varying density. They then inserted mouse follicles—balls of hormone-secreting cells encasing primordial ova—into the scaffolds and found after about a week that the scaffolds with smaller pores better supported follicles.

The researchers then inserted follicle-seeded, printed ovaries into seven female mice whose natural ovaries they had removed. The synthetic ovaries became vascularized within roughly a week, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer. Before joining the team, he worked as a reporter at Audubon and earned a master’s degree in science journalism from New York University. In his previous life, he pursued a career in science, getting a bachelor’s degree in wildlife biology from Montana State University and a master’s degree in marine biology from the College of Charleston in South Carolina. Bob edited Reading Frames and other sections of the magazine.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA