Miller-Urey Amino Acids, circa 1953

Credit: Courtesy of Adam Johnson" /> Credit: Courtesy of Adam Johnson When chemistry graduate student Stanley Miller first heard University of Chicago professor and Nobel laureate Harold Urey's idea that organic compounds, such as amino acids, arose in a reducing atmosphere, Miller was determined to find out. Together, they built the spark-charge apparatus—two glass flasks connected by glass t

Written byJennifer Evans
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

When chemistry graduate student Stanley Miller first heard University of Chicago professor and Nobel laureate Harold Urey's idea that organic compounds, such as amino acids, arose in a reducing atmosphere, Miller was determined to find out. Together, they built the spark-charge apparatus—two glass flasks connected by glass tubing. Miller filled one flask with water to represent the ocean; to the other, he sucked out oxygen and pumped in methane, ammonium, and hydrogen—the chemicals then believed to comprise the early atmosphere. Miller used electrodes to generate a spark in the "atmosphere" flask, simulating early lightning. After one week, Miller detected the presence of five different amino acids, offering the first evidence that amino acids could be produced in the atmosphere of primitive Earth.

The findings "showed for the first time that Darwin's so-called 'warm little pond' was feasible on the early Earth," says Miller's former graduate student, Jeffrey Bada, now a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery