Miller-Urey Amino Acids, circa 1953

Credit: Courtesy of Adam Johnson" /> Credit: Courtesy of Adam Johnson When chemistry graduate student Stanley Miller first heard University of Chicago professor and Nobel laureate Harold Urey's idea that organic compounds, such as amino acids, arose in a reducing atmosphere, Miller was determined to find out. Together, they built the spark-charge apparatus—two glass flasks connected by glass t

Written byJennifer Evans
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

When chemistry graduate student Stanley Miller first heard University of Chicago professor and Nobel laureate Harold Urey's idea that organic compounds, such as amino acids, arose in a reducing atmosphere, Miller was determined to find out. Together, they built the spark-charge apparatus—two glass flasks connected by glass tubing. Miller filled one flask with water to represent the ocean; to the other, he sucked out oxygen and pumped in methane, ammonium, and hydrogen—the chemicals then believed to comprise the early atmosphere. Miller used electrodes to generate a spark in the "atmosphere" flask, simulating early lightning. After one week, Miller detected the presence of five different amino acids, offering the first evidence that amino acids could be produced in the atmosphere of primitive Earth.

The findings "showed for the first time that Darwin's so-called 'warm little pond' was feasible on the early Earth," says Miller's former graduate student, Jeffrey Bada, now a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research