Modifications Abound

How to conduct your next large-scale epigenetic analysis

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Epigenetic changes are pivotal events in development and disease. With a constant genome, it is epigenetics - sequence-independent genetic control processes - that exert the molecular forces necessary to help cells remember their molecular heritage, turn somatic cells into stem cells, and forever silence Barr bodies in sex chromosome inactivation.

The National Institutes of Health acknowledged as much with its recently launched Roadmap Epigenomics Program, which seeks to map epigenetic modifications during normal development as a first step towards understanding how these processes can go awry. But how do you collect such data?

Epigenetics encompasses disparate control mechanisms that have little to do with DNA sequence per se. Methylcytosine often marks transcriptionally silent DNA. Histone tails studded with methyl, acetyl, and phosphate groups, among others, control how tightly DNA wraps around nucleosome spindles and how accessible that DNA is to protein binding. Noncoding RNA may be the genetic intermediary confining ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Jeffrey M. Perkel

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours