Neuroprosthetics

Linking the human nervous system to computers is providing unprecedented control of artificial limbs and restoring lost sensory function.

| 14 min read

Register for free to listen to this article
Listen with Speechify
0:00
14:00
Share

© ADRIANNA WILLIAMS/CPRBIS

Neuroprosthetic research began long before it solidified as an organized academic field of study. In 1973, University of California, Los Angeles, computer scientist Jacques Vidal observed modulations of signals in the electroencephalogram of a patient and wrote in Annual Review of Biophysics and Bioengineering: “Can these observable electrical brain signals be put to work as carriers of information in man-computer communication or for the purpose of controlling such external apparatus as prosthetic devices or spaceships?”1 While we don’t yet have mind-controlled spaceships, neural control of a prosthetic device for medical applications is now becoming commonplace in labs around the world.

Neuroprosthetics can be cate­gorized as output neural interfaces, which convert the brain’s intentions to external actions, or as input neural interfaces, which take information from ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Eric C. Leuthardt

    This person does not yet have a bio.
  • Jarod L. Roland

    This person does not yet have a bio.
  • Wilson Z. Ray

    This person does not yet have a bio.

Published In

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development