Neuroprosthetics

Linking the human nervous system to computers is providing unprecedented control of artificial limbs and restoring lost sensory function.

Written byEric C. Leuthardt, Jarod L. Roland, and Wilson Z. Ray
| 14 min read

Register for free to listen to this article
Listen with Speechify
0:00
14:00
Share

© ADRIANNA WILLIAMS/CPRBIS

Neuroprosthetic research began long before it solidified as an organized academic field of study. In 1973, University of California, Los Angeles, computer scientist Jacques Vidal observed modulations of signals in the electroencephalogram of a patient and wrote in Annual Review of Biophysics and Bioengineering: “Can these observable electrical brain signals be put to work as carriers of information in man-computer communication or for the purpose of controlling such external apparatus as prosthetic devices or spaceships?”1 While we don’t yet have mind-controlled spaceships, neural control of a prosthetic device for medical applications is now becoming commonplace in labs around the world.

Neuroprosthetics can be cate­gorized as output neural interfaces, which convert the brain’s intentions to external actions, or as input neural interfaces, which take information from ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform