New coding in arthropod mitochondria

Computational study suggests alternative coding in mitochondrial genomes may be more common than previously believed

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share
The mitochondrial genetic code in some arthropods contains an RNA-to-protein translation never seen before, according to a new study in Public Library of Science (PLoS) Biology. Using an automated genomics-based method, the authors found that translation of the RNA triplet AGG has changed many times in the evolutionary history of arthropods -- hinting that alternative genetic codes in mitochondrial genomes may be more common than suspected, the authors say."I think we're really looking here at the beginnings of a landslide change to recognizing the code is far more malleable than early dogma would have us believe," said Stephen Freeland of the University of Maryland, Baltimore County, who was not involved in the study.Scientists have reported unusual amino acid translations in nuclear genomes of yeasts and ciliates, as well as in mitochondrial genomes of several metazoans. These coding variants were usually discovered by comparative sequence analysis: If one species consistently uses a different RNA codon than other species in well-conserved protein regions, researchers reasoned that the odd codon's translation has changed.To search for mitochondrial genetic codes that might have been missed in previous studies, Federico Abascal of the University of Vigo and the National Museum of Natural Sciences in Spain and his colleagues automated comparative sequence analysis, and used it to analyze the mitochondrial codes of 626 metazoan species. Their analysis predicted that several groups of arthropods translate the triplet AGG as lysine -- even though it corresponds to arginine in the canonical genetic code, and to serine in almost all other invertebrate mitochondria. When the authors then compared AGG translation preference with arthropod phylogenies, they found that this coding has likely changed multiple times within different groups of arthropods. According to the authors' ancestral reconstruction, AGG was reassigned from serine to lysine at the origin of the arthropod phylum. Some arthropod lineages later reverted back to serine translation. By analyzing how various subgroups of arthropods likely translate AGG, the researchers found evidence that some lineages have switched back and forth between the two amino acids multiple times in their histories. "The pattern of parallel reassignments is surprising," Abascal told The Scientist in an Email. "Reassignments occur even within an insect order, [which] suggests that the AGG codon is highly unstable."He and his co-workers also found that changes in AGG's meaning corresponded to changes in tRNA anticodon sequences for both lysine and serine, suggesting that vacillating point mutations in these anticodons may have caused repeated changes in AGG's translation, Abascal said.The pairing between AGG and the lysine tRNA anticodon also suggests another novelty: a non-standard pairing between G and U in the middle triplet position. Such "wobble" pairings are common at the third codon position, but "in the entire history of the study of coding, this would be the first second-position wobble," said Michael Yarus of the University of Colorado at Boulder, who was not involved in the study. "I think that's the most uncertain part of the whole story." According to Abascal, it's possible that the middle tRNA base undergoes post-transcriptional modification that allows it to bind more effectively to AGG."Using a lot of genomic data to study this question... yields a more convincing conclusion than doing this analysis in a less-automated way," said Yarus. "A lot of interesting biology is hidden within the vastness of the sequence databases." Indeed, Abascal added that he and his colleagues are planning to extend the analyses to other organisms. "Other phyla not well sampled yet could give us other surprises."Melissa Lee Phillips mphillips@the-scientist.comLinks within this articleD. Secko, "Extending the genetic code," The Scientist, August 15, 2003. http://www.the-scientist.com/article/display/21537/F. Abascal et al., "Parallel evolution of the genetic code in arthropod mitochondrial genomes," Public Library of Science Biology, May 2006. http://biology.plosjournals.org/S. Blackman, "Discovering the 21st Amino Acid ... Again?," The Scientist, October 11, 2004. http://www.the-scientist.com/article/display/14979/Stephen Freeland http://www.umbc.edu/biosci/Faculty/freeland.htmlR.D. Knight et al., "Rewiring the keyboard: Evolvability of the genetic code," Nature Reviews Genetics, January 2001. PM_ID: 11253070Federico Abascal http://darwin.uvigo.es/people/fabascal/fede.htmlMichael Yarus http://mcdb.colorado.edu/faculty/yarus.htm
Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Melissa Lee Phillips

    This person does not yet have a bio.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome