New Immunity

A scaffolding protein forms the hub of a newly identified immune pathway in plants.

kerry grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

RACK ATTACK: Arabidopsis leaves respond to a bacterial protease through an immune pathway involving the scaffolding protein RACK1. ZHENYU CHENG

The paper Z. Cheng et al., “Pathogen-secreted proteases activate a novel plant immune pathway,” Nature, doi:10.1038/nature14243, 2015. The question In his quest to uncover the ways organisms ward off pathogens, Fred Ausubel at Massachusetts General Hospital and his lab had been looking for molecules (referred to by those in the field as MAMPs—microbe-associated molecular patterns) present in the pathogenic bacterium Pseudomonas aeruginosa that could spark a response in Arabidopsis. The answer What the team turned up was unusual: a P. aeruginosa–secreted protease. Other MAMPs known to trigger an innate immune response in plants don’t exhibit enzymatic activity. “It was kind of surprising,” says postdoc Zhenyu Cheng, who led the study. “So we tried to identify the components involved in detecting this protease.” The new pathway ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo