New Lyme Disease Test Developed by Summer Student

The high schooler was studying cancer biomarkers in a George Mason University lab when her familial experiences with Lyme disease sparked an idea.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

LYME LAB: Temple Douglas, then a high school student, works with former George Mason University grad student Davide Tamburro during the Aspiring Scientist Summer Internship Program.EVAN CANTWELL/GEORGE MASON UNIVERSITYToward the end of her 2009 summer internship at a George Mason University proteomics lab, high school student Temple Douglas wondered if she could use her research to turn a family problem into a clinical breakthrough. Lyme disease, a scourge in her native Virginia, had previously struck both her mother and brother, so the family was aware of the drawbacks of the single available diagnostic test. The current blood test probes for antibodies developed against the disease-causing bacterium Borrelia burgdorferi, which only appear several weeks after the onset of symptoms such as the telltale reddish oval or “bull’s-eye” rash that appears in three-fourths of cases. What if the hydrogel nanoparticles Douglas had been using to concentrate cancer biomarkers could directly trap B. burgdorferi proteins from patients and enable early-stage detection?

“Those bacteria have to be shedding proteins, and those proteins are probably secreted in the urine,” Douglas remembers thinking. So she continued to work in Alessandra Luchini’s lab throughout the fall and the following summer, fine-tuning the particles and testing their affinity for Lyme-causing bacterial proteins in urine. Her hard work paid off with a published paper (Biomaterials, 32:1157-66, 2011), and clinical trials of the test, launched in 2012.

Douglas joined Luchini’s lab, her first real research experience, through George Mason’s Aspiring Scientists Summer Internship Program (ASSIP). “Our goal. . . was to give [high school and college students] hands-on experiments in the lab so that they could experience the agony and the ecstasy of science,” says program cofounder and George Mason researcher Lance Liotta. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jenny Rood

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours