New Water Purification Systems Provide Increasingly Clean Solutions

Twenty-five years ago, water was considered "pure" enough for laboratory use if it would resist electrical current fairly well, suggesting it was relatively free of conductive ions. A new generation of highly sensitive analytical instruments-including high-performance liquid chromatography (HPLC) and inductively coupled plasma mass spectrometry (ICP-MS)- demand ultrapure water. Today's purification systems eliminate most contaminants, delivering water with total organic carbon (TOC) levels lowe

Written byGinger Pinholster
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Twenty-five years ago, water was considered "pure" enough for laboratory use if it would resist electrical current fairly well, suggesting it was relatively free of conductive ions. A new generation of highly sensitive analytical instruments-including high-performance liquid chromatography (HPLC) and inductively coupled plasma mass spectrometry (ICP-MS)- demand ultrapure water. Today's purification systems eliminate most contaminants, delivering water with total organic carbon (TOC) levels lower than a few parts per billion, inorganic contamination in the 50 parts-per-trillion range, and resistivity better than 18 megohms per centimeter.

ADVANCED LINE: The WaterPro Reverse Osmosis system, distributed by Labconco. The most advanced water purification systems also eliminate bacteria, bacterial fragments known as pyrogens, and even enzymes such as RNase. At the Fairfax Medical Lab in Chantilly, Va., for example, researcher Tony Cooper feeds ultrapure water into a chemistry analyzer whenever he measures liver enzymes, electrolytes, proteins, and other constituents in blood samples. Cooper, who ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH